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Abstract: The Clinical Dementia Rating (CDR) is commonly used to assess cognitive decline in
Alzheimer’s disease patients and is included in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. We divided 741 ADNI participants with blood microarray data into three groups
based on their most recent CDR assessment: cognitive normal (CDR = 0), mild cognitive impairment
(CDR = 0.5), and probable Alzheimer’s disease (CDR ≥ 1.0). We then used machine learning to predict
cognitive status using only blood RNA levels. Only one probe for chloride intracellular channel 1
(CLIC1) was significant after correction. However, by combining individually nonsignificant probes
with p-values less than 0.1, we averaged 87.87% (s = 1.02) predictive accuracy for classifying the
three groups, compared to a 55.46% baseline for this study due to unequal group sizes. The best
model had an overall precision of 0.902, recall of 0.895, and a receiver operating characteristic (ROC)
curve area of 0.904. Although we identified one significant probe in CLIC1, CLIC1 levels alone were
not sufficient to predict dementia status and cannot be used alone in a clinical setting. Additional
analyses combining individually suggestive, but nonsignificant, blood RNA levels were significantly
predictive and may improve diagnostic accuracy for Alzheimer’s disease. Therefore, we propose
that patient features that do not individually predict cognitive status might still contribute to overall
cognitive decline through interactions that can be elucidated through machine learning.

Keywords: diagnosis; machine learning; chloride intracellular channel 1 (CLIC1); clinical dementia
rating; Alzheimer’s disease

1. Introduction

Late-onset Alzheimer’s disease (AD) has long devastated the elderly population, affecting over
10% of adults older than 65 [1]. While AD was once considered a discrete disease with a single
phenotype, the National Institute on Aging and Alzheimer’s Association now classifies AD as a
continuum of biomarker and neuroimaging levels under a biological construct [2], indicating that
biology and cognitive decline are intertwined. Although many techniques are available to diagnose
cognitive decline, undetected dementia remains at 55–68% globally [3]. Patients are often unaware of
their cognitive decline [4], limiting their ability to adequately address physical and mental limitations
caused by dementia. Furthermore, 15–35% of patients older than 65 who are offered cognitive screening
refuse to perform cognitive assessments, especially if they do not personally know anyone affected
with AD [5,6]. Even after being referred by a community pharmacist to a physician for a follow-up
cognitive study, almost 80% of pre-screened patients did not see a physician within 60 days, and over
40% of patients were unwilling to pay for additional cognitive screening [7]. Older adults often view
cognitive assessments as embarrassing, invasive, and confusing [8,9]. However, without a proper
diagnosis, patients may postpone end-of-life planning until their memory further deteriorates, or they
may be incapable of completing an advance directive (i.e., living will) if their memory has already
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deteriorated [10]. Therefore, it is imperative that cognitive function is accurately and affordably
diagnosed early in disease progression in a manner that makes the patient feel comfortable.

The Clinical Dementia Rating (CDR) [11] is a widely used cognitive diagnostic assessment [12] that
is comparable to the gold standard dementia diagnostic criteria [13]. The CDR examination is complex
and requires 8–9 h of training before it can be administered by a researcher or clinician. Additionally,
the patient examination is cumbersome and takes between 30–90 min [14], requiring an assessment of
differences in patient memory compared to the memory from a reliable informant (e.g., family member
or caregiver) [15]. In contrast, a blood draw is less intrusive and could be completed in a matter of
minutes by healthcare professionals without specialized cognitive training. Therefore, a blood draw
establishing the biological basis for cognitive decline would improve diagnostic accessibility and
potentially increase patient response rate.

Previous studies have used blood mRNA levels to predict cognitive decline with mixed results. Lee
and Lee [16] identified significant differences in expression in genes that were enriched in inflammatory
and immune pathways, although the predictive power varied significantly between studies. Similarly,
differential expression in genes implicated in other autoimmune diseases have previously been
linked to AD [17]. RNA levels are also distinct across cognitive status, independent of white matter
hyperintensities, which indicates that RNA levels alone may be sufficient as a diagnostic technique [18].
Other studies have aimed to use peripheral blood to predict cognitive decline before symptoms become
evident, and increases in extracellular RNA in blood plasma are associated with later developing
AD [19]. Here, we used blood RNA levels in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset to predict patient CDR. We performed dimensionality reduction to avoid overfitting on the
training dataset by using an analysis of variance (ANOVA), which is a statistical method that analyzes
differences between group means in a sample, as an initial filter to select the most significant microarray
probes, similar to other machine learning analyses of microarray data [20]. We filtered 49,386 RNA
probes based on their ANOVA p-values, and we used various p-value thresholds to assess predictive
accuracy. Probes exceeding the p-value threshold were used as input features in a support vector
machine to predict CDR scores for 741 participants in the ADNI dataset.

2. Materials and Methods

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

We used RNA expression data from an Affymetrix HG U219 Array (Affymetrix, Santa Clara,
California, USA). ADNI preprocessed the raw expression values using the Robust Multi-chip Average
(RMA) normalization method before mapping and annotating the probe sets to the hg19 human
reference genome. The ADNI Genetics Core performed several other quality control measures on
the dataset. Array plate randomization, gender and diagnosis balance, participant and probe quality
control, and SNP-transcript cis-eQTL posterior probabilities were completed to ensure that analyses
conducted on the dataset are not impacted by confounding factors. We also ensured that each individual
had taken a CDR exam, which limited the available dataset to 49,386 probes across 741 participants
whose cognitive abilities ranged from normal to severe dementia.

We labelled participants in one of three cognitive groups based on their most recent CDR score:
cognitive normal (CDR = 0), mild cognitive impairment (CDR = 0.5), and probable AD (CDR ≥ 1.0).
We clustered CDR levels of 2.0 and 3.0 into the probable AD group to maintain predictive power
because only 15 individuals had a CDR score of 2.0 and only one individual had a CDR score of 3.0.
In total, 250 individuals were cognitive normal, 411 individuals had mild cognitive impairment, and
80 individuals had probable AD based on their respective CDR score.
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We conducted a one-way analysis of variance (ANOVA) on each of the 49,386 probes individually
to test the extent to which expression levels for each RNA probe significantly differed between the three
groups. After a Bonferroni correction, our significance threshold was 1.012 × 10−6. We further assessed
sex-specific biases in the three groups using the five X-inactive specific transcript (XIST) probes in the
dataset, and we determined that no significant sex differences exist between the three cognitive groups
(p-values = 0.0145, 0.017, 0.019, 0.041, and 0.068).

We then pruned our dataset based on the following α values: 1.0 × 10−6, 5.0 × 10−6, 1.0 × 10−5,
5.0 × 10−5, 1.0 × 10−4, 5.0 × 10−4, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0. These cutoff criteria were used
for feature selection of RNA probes as input in a machine learning model. We used the Waikato
Environment for Knowledge Analysis (Weka) [21] implementation of sequential minimal optimization,
which is a fast heuristic of a polynomial kernel support vector machine. Support vector machines
are non-probabilistic binary linear classifiers that separate training data so that the separator creates
the largest gap possible between different groups. We scaled our input features in two ways: 1)
normalizing input features by rescaling the data between 0 and 1, and 2) standardizing input features
based on standard deviations from the sample mean. All other hyperparameters were left at their
default settings in Weka. We performed 10-fold cross validation for each α value and scaled input
values, repeating each analysis 10 times by randomizing the seed used for 10-fold cross validation to
limit the potential effects of training set splitting on our prediction. We then assessed the predictive
accuracy of each partition. Figure 1 depicts the process used to analyze the data.
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Additionally, we assessed the merit of our machine learning results through using random
permutations. By randomly permuting the output classes on the training set with the highest predictive
accuracy (i.e., using the α value with the highest predictive accuracy and maintaining the same number
of training features in the permutations), we were able to assess algorithmic bias inherent in the dataset
and calculate a p-value for the results from our model. We calculated the predictive accuracy, precision,
recall, and Receiver operating characteristic (ROC) curve area for 100 separate permutations using the
same input parameters as our predictive model: a polynomial kernel support vector machine in Weka.
We then calculated the mean and standard deviation across all permutations to assess the accuracy of
our predictive model using the correct input labels.

3. Results

We first analyzed each probe individually to determine if significant differences in RNA levels
exist between the three cognitive groups. All three Chloride Intracellular Channel 1 (CLIC1) probes
were in the top five most significant probes for the dataset, with one probe exceeding the Bonferroni
threshold for significance. Table 1 shows the mean expression levels for the significant CLIC1 probe
(11757474_x_at). The mean levels for the cognitive normal and mild cognitive impairment groups do
not significantly differ (p-value = 0.30). However, the probable AD group has a significantly higher
mean expression than the other two groups (p-value = 5.2781 × 10−7) and has a moderate to large effect
size (Cohen’s d = 0.6295).

Table 1. Mean RNA expression levels for the 11757474_x_at probe. The three groups are based on
Clinical Dementia Rating (CDR): cognitive normal (CDR = 0), mild cognitive impairment (CDR =

0.5), and Alzheimer’s disease (CDR ≥ 1.0). The mean RNA levels for the Alzheimer’s disease group
significantly differs from the other two groups.

Group N
Mean

11757474_x_at
Expression

Standard Deviation
11757474_x_at

Expression

Standard Error
11757474_x_at

Expression

Percent
Female (%)

Average Age ±
One Standard

Deviation

Cognitive
Normal 250 11.574 0.1104 0.007 52.21 76.28 ± 6.46

Mild
Cognitive

Impairment
411 11.583 0.1069 0.0053 41.95 73.39 ± 7.94

Alzheimer’s
Disease 80 11.6479 0.1088 0.0122 39.76 77.75 ± 8.43

Although mean RNA levels for CLIC1 probe 11757474_x_at statistically differ from mean RNA
levels in the other two cognitive groups, that probe alone is insufficient to predict cognitive status.
Therefore, we examined combinations of individually nonsignificant probes to predict CDR levels.
Collectively, the probes roughly followed expected significance values, with about 5% of the probes
having p-values less than or equal to 0.05. Figure 2 depicts the ANOVA p-values for each probe and
the Bonferroni corrected α value for the dataset.

We used 13 α values for feature selection to assess the combined predictive power of individually
nonsignificant probes ranging from 1.0 × 10−6 (one probe) to 1.0 (all probes). Probes with p-values
less than or equal to the selected α value were either standardized or normalized and included in
two separate models. We tested the effects of standardization and normalization to ensure that our
analyses were not affected by the assumption of a Gaussian distribution. Additionally, since 10-fold
cross validation is also subject to biases related to splits when the dataset is relatively small, we
permutated the input files 10 times and performed 10-fold cross validation on each permutation to
calculate a standard deviation for the support vector machine on each α value. Figure 3 shows the
percent accuracies and standard deviations in predicting cognitive status for each α value using 10-fold
cross validation. The highest predictive power occurred when using a α of 0.1. The standardized
permutations had a mean accuracy of 87.87% (s = 1.02), while the normalized permutations had a mean
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accuracy of 87.25% (s = 0.77). A t-test showed a significant difference between the maximum percent
accuracies between the normalized and standardized datasets (p-value = 5.039 × 10−38), although the
difference in the mean predictive accuracy was minimal (0.52%). All ten permutations in both datasets
had a 0% false positive rate for AD. The confusion matrix for the most accurate prediction from 10-fold
cross validation of the standardized data with a α of 0.1 is shown in Table 2. The overall precision,
recall, and ROC curve area for the model was 0.902, 0.895, and 0.904, respectively. Using additional
probes with p-values higher than 0.1 significantly decreased the predictive accuracy, eventually leading
to the baseline accuracy of 55.46%.

We performed 100 random permutations of the training labels starting with the dataset that was
created using 0.1 as a α value for feature selection because it had the greatest predictive accuracy. We
found that 10-fold cross validation of the support vector machine of the dataset with the CDR labels
from ADNI significantly differs from the 10-fold cross validation of the null randomized dataset. The
average precision, recall, and ROC curve area for the random permutations was 0.434 ± 0.180, 0.483 ±
0.0172, and 0.502 ± 0.0166, respectively. Our best model using the true CDR labels outperformed the
mean precision, accuracy, and ROC curve area of the random permutations by 0.468, 0.412, and 0.402,
respectively. Additionally, the highest random permutation reported precision, accuracy, and ROC curve
area of only 0.480, 0.533, and 0.550, respectively. Please specify whether linear or kernel SVM was used.
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Figure 2. ANOVA p-values for 49,386 Microarray Probes. Negative log-transformed p-values for
each probe, sorted by chromosome position. Black and grey coloring alternate to indicate different
chromosomes. The dashed line shows the Bonferroni threshold for significance after correcting
for multiple tests. Only one probe for the Chloride Intracellular Channel 1 (CLIC1) exceeded the
significance threshold.
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Table 2. Confusion matrix of the best cross validation using standardization with a α of 0.1. The model
prediction and the CDR assessment for all three cognitive groups is shown. Additionally, precision,
accuracy, and ROC curve area, including the weighted average for the model, are depicted.

Model
Prediction Cognitive

Normal
(CDR = 0)

Mild
Cognitive

Impairment
(CDR = 0.5)

Probable
Alzheimer’s

Disease
(CDR ≥ 1.0)

Precision Recall

Receiver
Operating

Characteristic
(ROC) Curve Area

CDR
Assessment

Cognitive
Normal 214 36 0 0.926 0.856 0.921

Mild
Cognitive

Impairment
12 399 0 0.867 0.971 0.894

Probable
Alzheimer’s

Disease
5 25 50 1.0 0.625 0.906

Weighted
Average N/A N/A N/A 0.902 0.895 0.904

4. Discussion

We identified one significant probe in the chloride intracellular channel 1 (CLIC1). CLIC1 has
previously been linked to AD and induces neurotoxin production in the presence of β-amyloid (Aβ)
protein [22]. A direct link between CLIC1 expression and Aβ-induced microglial activation has also
been established [23]. Our analyses show that significantly higher levels of CLIC1 exist in AD patients
compared with cognitive normal and mild cognitive impairment groups and the effect size of the
difference in moderate to high. These results support previous indications that CLICL1 levels increase in
AD patients and additionally show that these differences are detectable in peripheral blood. However,
CLIC1 expression alone is insufficient to accurately diagnose cognitive status in an individual with AD.

Additionally, B-cell CLL/lymphoma 7 protein family member A (BCL7A) and Mitogen-Activated
Protein Kinase 14 (MAPK14) individually approached significance in our dataset. Although BCL7A
has not previously been directly linked to AD, it is known that B cells are impaired throughout the
aging process, which likely compromises the immune system [24], and a compromised peripheral



Genes 2020, 11, 706 7 of 9

immune system is linked to AD [25]. MAPK14 has previously been used as a therapeutic target of
AD to regulate inflammation and target innate immune brain responses [26]. MAPK14 regulates
immunological responses and integral in the production of chemokines and cytokines in astrocytes [27].
Both genes are involved in immune response, and support previous research indicating association of
AD with differential expression in gene integral to the immune system [16]. Additionally, MAPK14 is
located 4 Mbp downstream from CLIC1 on chromosome 6, and the proximity to CLIC1 may cause a
false positive significant p-value due to gene interactions or linkage disequilibrium. However, our
analyses also show that these genes alone are not sufficient to predict AD status.

5. Conclusions

Our analyses indicate that machine learning may be able to predict cognitive decline in individuals
using RNA levels from a blood microarray by taking into account small differences in expression that
are individually nonsignificant. A support vector machine was able to increase predictive accuracy
of AD from a 55% baseline to almost 90%. There was also a clear directionality in the predictions,
with incorrect predictions for cognitive normal and AD patients more likely to be one cognitive group
away from the diagnosis (e.g., incorrect predictions for AD patients were more likely to be predicted
as mild cognitive impairment than cognitive normal). This directionality indicates that blood RNA
levels gradually change as a patient progresses from a cognitive normal state to AD and supports the
National Institute on Aging and Alzheimer’s Association’s guidelines that label AD on a continuum.

Our analyses also suggest that combining individually nonsignificant traits that suggest an
association (e.g., p-value less than 0.1) may increase the accuracy of disease assessments and be a viable
method of feature selection. Therefore, we propose that using a similar technique to combine other
biomarkers in machine learning models may further increase the accuracy of early AD diagnoses even
when those traits alone are insufficient to predict cognitive status. At the population level, low body
mass index [28], vital exhaustion [29], and changes in retinal microvasculature [30] each indicate early
signs of Alzheimer’s disease. However, the natural variance within the population limits the use of
these biomarkers in a clinical setting. Similarly, individual RNA probes within the ADNI dataset have
reported levels that significantly overlap between cognitive groups and cannot be used in isolation to
diagnose a patient. However, predictions became much more accurate when considering thousands
of minor differences in RNA levels. Similarly, machine learning may be able to combine minor,
individually nonsignificant, differences across diverse biomarkers to improve predictive accuracy for
AD diagnosis in the future.
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